Solution Exercice 1 / Série 3
a) Table de vérité pour n= 3 bits
| Dec |
Binaire |
Gray |
| |
x |
y |
z |
a |
b |
c |
| 0 |
0 |
0 |
0 |
0 |
0 |
0 |
| 1 |
0 |
0 |
1 |
0 |
0 |
1 |
| 2 |
0 |
1 |
0 |
0 |
1 |
1 |
| 3 |
0 |
1 |
1 |
0 |
1 |
0 |
| 4 |
1 |
0 |
0 |
1 |
1 |
0 |
| 5 |
1 |
0 |
1 |
1 |
1 |
1 |
| 6 |
1 |
1 |
0 |
1 |
0 |
1 |
| 7 |
1 |
1 |
1 |
1 |
0 |
0 |
Tableaux de Karnaught :
| a : |
\z
xy\ |
0 |
1 |
| 00 |
0 |
0 |
| 01 |
0 |
0 |
| 11 |
1 |
1 |
| 10 |
1 |
1 |
|
a = x |
| b : |
\z
xy\ |
0 |
1 |
| 00 |
0 |
0 |
| 01 |
1 |
1 |
| 11 |
0 |
0 |
| 10 |
1 |
1 |
|
_ _
b= x.y + x.y = x ⊕ y |
| c : |
\z
xy\ |
0 |
1 |
| 00 |
0 |
1 |
| 01 |
1 |
0 |
| 11 |
1 |
0 |
| 10 |
0 |
1 |
|
_ _
c= y.z + y. z = y ⊕z |
 |
b) Table de vérité pour n= 3 bits
| Dec |
Gray |
Binaire |
| |
a |
b |
c |
x |
y |
z |
| 0 |
0 |
0 |
0 |
0 |
0 |
0 |
| 1 |
0 |
0 |
1 |
0 |
0 |
1 |
| 3 |
0 |
1 |
0 |
0 |
1 |
1 |
| 2 |
0 |
1 |
1 |
0 |
1 |
0 |
| 7 |
1 |
0 |
0 |
1 |
1 |
1 |
| 6 |
1 |
0 |
1 |
1 |
1 |
0 |
| 4 |
1 |
1 |
0 |
1 |
0 |
0 |
| 5 |
1 |
1 |
1 |
1 |
0 |
1 |
Tableaux de Karnaught :
| x : |
\c
ab\ |
0 |
1 |
| 00 |
0 |
0 |
| 01 |
0 |
0 |
| 11 |
1 |
1 |
| 10 |
1 |
1 |
|
x= a |
| y : |
\c
ab\ |
0 |
1 |
| 00 |
0 |
0 |
| 01 |
1 |
1 |
| 11 |
0 |
0 |
| 10 |
1 |
1 |
|
_ _
y= a.b + a.b = a ⊕b |
| z : |
\c
ab\ |
0 |
1 |
| 00 |
0 |
1 |
| 01 |
1 |
0 |
| 11 |
0 |
1 |
| 10 |
1 |
0 |
|
z= a ⊕b ⊕c |
 |