SERIE N°2

Exercice 1

1. Etablir les tables de vérité des fonctions :

$$\checkmark$$
 $F1 = XY + YZ + XZ$

$$\checkmark$$
 F2 = (X +Y)(\bar{X} +Y + Z)

✓ F3 =
$$(\bar{X}Y + X\bar{Y})\bar{Z} + (\bar{X}\bar{Y} + XY)Z$$

$$\checkmark$$
 F4 = $\bar{X}Z + YT + X\bar{Z}$

2. Démontrer à l'aide de tables de vérité les équivalences suivantes :

$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

$$X + YZ = (X+Y)(x+z)$$

$$X + \overline{X}Y = X+Y$$
.

$$(\bar{X}+Y)(X+Z)(Y+Z) = (\bar{X}+Y)(X+Z)$$

Exercice 2

Simplifier les expressions suivantes :

$$\checkmark$$
 $(x+y)(\overline{x}+y)$

$$\checkmark \quad \bar{x}\bar{y} + xy + \bar{x}y$$

$$\checkmark$$
 $(x+ \overline{y} + x \overline{y})(xy + \overline{x}z + yz)$

$$\checkmark$$
 $(x+y+z)(\bar{x}+y+z)+xy+yz$

$$\checkmark$$
 $x.y+z+\bar{y}.\bar{z}+\bar{x}\bar{z}.$

✓
$$abcd + abchg + \overline{d}hg + abcdefh$$
.

$$\checkmark$$
 a \bar{c} de + \bar{d} + \bar{e} + c

Exercice 3

Démontrer algébriquement les égalités suivantes :

$$\checkmark$$
 $\overline{A}B + AB + A \overline{B} + \overline{A} \overline{B} = 1$

$$\checkmark$$
 A \overline{B} + \overline{A} \overline{C} \overline{D} + \overline{A} $\overline{B}D$ + \overline{A} $\overline{B}C$ \overline{D} = \overline{A} \overline{C} \overline{D} + \overline{B}

$$\checkmark$$
 A.B+ \bar{A} .C +B.C=A.B+ \bar{A} .C

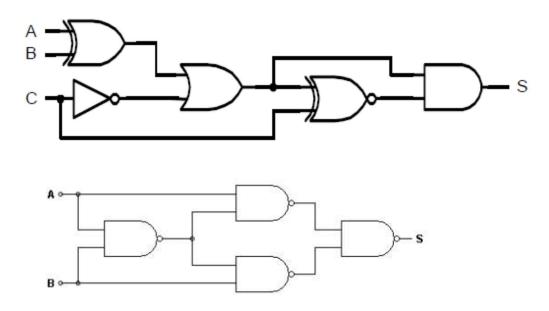
$$\checkmark$$
 AB + ACD + \bar{B} D = AB+ \bar{B} D

$$\checkmark$$
 AB + \bar{B} C = $(A + \bar{B})(B + C)$

$$\checkmark \overline{A.C+B.\bar{C}} = \bar{A}.C+\bar{B}.\bar{C}$$

Exercice 4

Simplifier à l'aide du théorème de De Morgan :


$$S = (x+\overline{y+z})(x+\overline{y}\overline{z}) + \overline{x}\overline{y}(\overline{z}t+tz)$$

$$Z = \overline{a+b+a+c+a} + b+0$$

$$T = \overline{(a \ \overline{b})(b + c + \overline{d})} + \overline{bc}$$

Exercice 5

1. Dresser la table de vérité des circuits suivants :

∖ab cď 00 01

2. Extraire l'équation de S à partir de la table de vérité

10

1

11

1

1

1

1

Exercice 6

Déterminer les équations simplifiées des fonctions décrites par les tableaux de Karnaugh suivants :

01

10

\ab	00	01	11	10
\ab				
00	1	1	1	
01		1	1	
11		1	1	
10	1	1	1	1

01

1

1

00

11		1	1	1
10	1			
ab cd 00	00	01	11	10
cd				
00	1			1
01		1	1	
1.1		1	1	

\ab	00	01	11	10
cd				
00	1			1
01	1	1		1
11		1	1	
10	1		1	1

\ab	00	01	11	10
cd				
00	1			1
01		1	1	
11		1	1	
10	1			1

\ab	00	01	11	10
cd				
00	1			1
01	1	1	1	1
11	1	1		
10				

Exercice 7

\ab

cd 00

01

11

10

Simplifier les fonctions données par les tableaux de Karnaugh. Réaliser les circuits à l'aide de portes NAND uniquement, puis NOR uniquement.

\ab	00	01	11	10
cd				
00				1
01		1	1	1
11		1	1	
10				

\ab	00	01	11	10
cd				
00	1			1
01	X	1	1	1
11	X	1	1	X
10	X			

\ab	00	01	11	10
cd				
00	1	1		1
01	1	1	X	1
11	1	1		1
10	X	X		

Exercice 8

Simplifier à l'aide des tableaux de Karnaught les fonctions suivantes puis réaliser les circuits correspondants à l'aide de portes NOR ou NAND.

$$F(a, b, c) = \pi(0, 1, 2, 3, 4, 7)$$

$$G(a, b, c, d) = \sum (2, 6, 7, 10, 11, 12, 14)$$

$$H(a, b, c, d) = \pi(2, 4, 7, 10, 12, 15) + \pi(6, 9, 11, 14)$$

$$I(a, b, c, d) = \Sigma(0, 1, 2, 3, 12, 13, 14, 15) + \Sigma(4, 5, 6, 7)$$

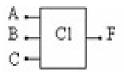
Exercice 9

Soit la fonction F donnée par :

$$F = (A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D})(A + \overline{B} + C + \overline{D})(A + \overline{B} + C + D)(A + \overline{B} + C + D)$$

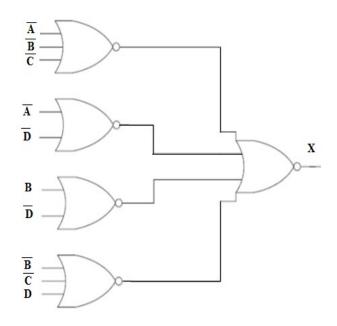
Donner les schémas logiques de la fonction simplifiée en utilisant :

- a) Des portes NON ET, à partir de la forme simplifiée disjonctive.
- b) Des portes NON OU, à partir de la forme simplifiée conjonctive.
- c) Des portes ET, OU, et des inverseurs à partir d'une des deux formes ;


Exercice 10

1. Soit la fonction F composée de NOR uniquement :

$$F = \overline{(\overline{x+y+z}) + (\overline{x+y+\bar{z}}) + \overline{x} + y + z}$$


Donnez la table de vérité, la première forme canonique ainsi que la fonction correspondante composée de NAND uniquement.

- 2. Soit la fonction F(A,B,C) définie comme suit:
- $F(A,B,C) = 1 \text{ si } (ABC)_2 \text{ comporte un nombre impair de } 1;$
- F(A,B,C) = 0 sinon.

- a) Etablir la table de vérité de F.
- b) Donner l'équation algébrique de F.
- c) Donner le schéma du circuit C1 de la fonction F avec le minimum de portes logiques.

Exercice 11

- Écrivez l'équation logique de X et simplifiez-la si nécessaire.
- Étudiez ensuite sa meilleure implémentation sous les formes disjonctives et conjonctives au moyen des tableaux de Karnaugh
- proposez votre meilleure implémentation.